Fire in the Belly? Sulfur-Reducing Gut Microbes Fuel Arsenic Thiolation

نویسنده

  • Carol Potera
چکیده

Inorganic arsenic, a ubiquitous environmental toxicant, is well known for its harmful effects in humans, including cancer, diabetes, and cardiovascular disease. Organic forms of arsenic, such as monomethylarsonic acid (MMAV), are generally considered less toxic than inorganic arsenicals. Researchers report in this issue of EHP that certain bacteria in the human colon can promote the conversion of MMAV into the more toxic metabolite monomethyl monothioarsonic acid (MMMTAV).2 MMMTAV is what’s known as a thiolated arsenical; “thiolated” means it contains a sulfur group. Thiolated arsenicals can be up to 100 times more cytotoxic than their non-thiolated counterparts. MMMTAV and another th iolated metabolite, dimethyl monothioarsinic acid, have been detected in the urine of people who drank water contaminated with inorganic arsenic. The authors of the new study hypothesized that sulfur-reducing bacteria might be important for converting MMAV to a thiolated form. They tested their hypothesis using a Simulator of the Human Intestinal Microbial Ecosystem (SHIME), a device that mimics the digestive processes of the stomach, small intestine, and ascending, transverse, and descending portions of the colon. SHIME “is an in vitro tool that helps to mechanistically explain in vivo observations. You can tweak certain parameters while keeping others constant,” says team leader Tom Van de Wiele. A series of experiments were performed using fecal samples ref lecting a full complement of gut microbiota, samples in which sulfur-reducing bacteria were either enriched or suppressed, and pure cultures of Desulfovibrio desulfuricans (piger). The fecal samples were collected from 7 individuals, none of whom had taken antibiotics within the past 6 months. The authors found that most arsenic biotransformation took place in the ascending and transverse colon. Hydrogen sulfide produced by gut bacteria drove this biotransformation; the addition of molybdate blocked hydrogen sulfide production and the conversion of MMAV to MMMTAV. Fecal microbiota from the 7 individuals produced varying amounts of hydrogen sulfide, which corresponded with variations in MMMTAV formation. Based on this evidence, the authors conclude that arsenic thiolation in the gut “can be considered a chemical process that requires a biological trigger, that is, sulfide production by metabolically active [sulfurreducing bacteria].” The health consequences of the thiolated methylarsenicals produced in the gut remain unknown. “It’s an ‘orange flag,’ and one example of how certain microbial groups may contribute to increased toxicant risk,” says Van de Wiele. Numerous studies from the Human Microbiome Project have reported that the microbiome plays an integral role in human health. Similarly, toxicokinetics and pharmacokinetics also play important roles. “We cannot neglect these microbial processes,” says Van de Wiele. Evaluating the potential risk of these compounds will not be a straightforward process; with an estimated 100 trillion microbes inhabiting the human gastrointestinal tract, the possible interactions with arsenic are endless. A first attempt could measure the conversion of MMAV to MMMTAV in human fecal samples. The results from the lowest and highest arsenic-converters may provide clues about how microbial processes control toxicant conversion, proposes Van de Wiele. “The active involvement of sulfur-reducing bacteria in arsenic thiolation offers a novel intervention strategy to modulate arsenic metabolism by altering these bacteria,” says Kun Lu, an assistant professor at the University of Georgia, Athens, who was not involved with the study. Lu says the study also shows the clear impact of these bacteria on individual variability in thiolation, providing further insight into the role gut bacteria may play in

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arsenic Thiolation and the Role of Sulfate-Reducing Bacteria from the Human Intestinal Tract

BACKGROUND Arsenic (As) toxicity is primarily based on its chemical speciation. Although inorganic and methylated As species are well characterized in terms of metabolism and formation in the human body, the origin of thiolated methylarsenicals is still unclear. OBJECTIVES We sought to determine whether sulfate-reducing bacteria (SRB) from the human gut are actively involved in the thiolation...

متن کامل

Gut microbiome perturbations induced by bacterial infection affect arsenic biotransformation.

Exposure to arsenic affects large human populations worldwide and has been associated with a long list of human diseases, including skin, bladder, lung, and liver cancers, diabetes, and cardiovascular disorders. In addition, there are large individual differences in susceptibility to arsenic-induced diseases, which are frequently associated with different patterns of arsenic metabolism. Several...

متن کامل

Sulfur Amino Acids Regulate Translational Capacity and Metabolic Homeostasis through Modulation of tRNA Thiolation

Protein translation is an energetically demanding process that must be regulated in response to changes in nutrient availability. Herein, we report that intracellular methionine and cysteine availability directly controls the thiolation status of wobble-uridine (U34) nucleotides present on lysine, glutamine, or glutamate tRNAs to regulate cellular translational capacity and metabolic homeostasi...

متن کامل

Sulfur transfer and activation by ubiquitin-like modifier system Uba4•Urm1 link protein urmylation and tRNA thiolation in yeast

Urm1 is a unique dual-function member of the ubiquitin protein family and conserved from yeast to man. It acts both as a protein modifier in ubiquitin-like urmylation and as a sulfur donor for tRNA thiolation, which in concert with the Elongator pathway forms 5-methoxy-carbonyl-methyl-2-thio (mcm5s2) modified wobble uridines (U34) in anticodons. Using Saccharomyces cerevisiae as a model to stud...

متن کامل

Microbial Community in High Arsenic Shallow Groundwater Aquifers in Hetao Basin of Inner Mongolia, China

A survey was carried out on the microbial community of 20 groundwater samples (4 low and 16 high arsenic groundwater) and 19 sediments from three boreholes (two high arsenic and one low arsenic boreholes) in a high arsenic groundwater system located in Hetao Basin, Inner Mongolia, using the 454 pyrosequencing approach. A total of 233,704 sequence reads were obtained and classified into 12-267 o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 122  شماره 

صفحات  -

تاریخ انتشار 2014